When BLUE is not best: non-normal errors and the linear model
Daniel K. Baissa and
Carlisle Rainey
Political Science Research and Methods, 2020, vol. 8, issue 1, 136-148
Abstract:
Researchers in political science often estimate linear models of continuous outcomes using least squares. While it is well known that least-squares estimates are sensitive to single, unusual data points, this knowledge has not led to careful practices when using least-squares estimators. Using statistical theory and Monte Carlo simulations, we highlight the importance of using more robust estimators along with variable transformations. We also discuss several approaches to detect, summarize, and communicate the influence of particular data points.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:pscirm:v:8:y:2020:i:1:p:136-148_10
Access Statistics for this article
More articles in Political Science Research and Methods from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().