Hybrid Feature Extraction and Capsule Neural Network Model for Fake News Detection
R. Uma Maheswari and
N. Sudha
Data and Metadata, 2023, vol. 2, 190
Abstract:
The introduction and widespread use of social media has altered how information is generated and disseminated, along with the expansion of the Internet. Through social media, information is now more quickly, cheaply, and easily available. Particularly harmful content includes misinformation propagated by social media users, such as false news. Users find it simple to post comments and false information on social networks. Realising the difference between authentic and false news is the biggest obstacle. The current study's aim of identifying bogus news involved the deployment of a capsule neural network. However, with time, this technique as a whole learns how to report user accuracy. This paper offers a three-step strategy for spotting bogus news on social networks as a solution to this issue. Pre-processing is executed initially to transform unstrsuctrured data into a structured form. The second part of the project brought the HFEM (Combined Feature Extraction Model), which also revealed new relationships between themes, authors, and articles as well as undiscovered features of false news. based on a collection of traits that were explicitly and implicitly collected from text. This study creates a capsule neural network model in the third stage to concurrently understand how creators, subjects, and articles are presented. This work uses four performance metrics in evaluations of the suggested classification algorithm using on existing public data sets
Date: 2023
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:dbk:datame:v:2:y:2023:i::p:190:id:1056294dm2023190
DOI: 10.56294/dm2023190
Access Statistics for this article
More articles in Data and Metadata from AG Editor
Bibliographic data for series maintained by Javier Gonzalez-Argote ().