EconPapers    
Economics at your fingertips  
 

Exploration of Scientific Documents through Unsupervised Learning-Based Segmentation Techniques

Mohamed Cherradi and Anass El Haddadi

Seminars in Medical Writing and Education, 2024, vol. 3, 68

Abstract: Navigating the extensive landscape of scientific literature presents a significant challenge, prompting the development of innovative methodologies for efficient exploration. Our study introduces a pioneering approach for unsupervised segmentation, aimed at revealing thematic trends within articles and enhancing the accessibility of scientific knowledge. Leveraging three prominent clustering algorithms—K-Means, Hierarchical Agglomerative, and DBSCAN—we demonstrate their proficiency in generating meaningful clusters, validated through assessment metrics including Silhouette Score, Calinski-Harabasz Index, and Davies-Bouldin Index. Methodologically, comprehensive web scraping of scientific databases, coupled with thorough data cleaning and preprocessing, forms the foundation of our approach. The efficacy of our methodology in accurately identifying scientific domains and uncovering interdisciplinary connections underscores its potential to revolutionize the exploration of scientific publications. Future endeavors will further explore alternative unsupervised algorithms and extend the methodology to diverse data sources, fostering continuous innovation in scientific knowledge organization

Date: 2024
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:dbk:medicw:v:3:y:2024:i::p:68:id:68

DOI: 10.56294/mw202468

Access Statistics for this article

More articles in Seminars in Medical Writing and Education from AG Editor (Argentina)
Bibliographic data for series maintained by Javier Gonzalez-Argote ().

 
Page updated 2025-09-21
Handle: RePEc:dbk:medicw:v:3:y:2024:i::p:68:id:68