Resnet for blood sample detection: a study on improving diagnostic accuracy
Arepalli Gopi,
L.r Sudha and
Joseph S Iwin Thanakumar
Salud Integral y Comunitaria, 2025, vol. 3, 193-193
Abstract:
Automated blood cell analysis plays a crucial role in medical diagnostics, enabling rapid and accurate assessment of a patient's health status. In this paper, we provide a unique technique for detecting and classifying WBCs,RBCs, and platelets inside blood smear pictures using ResNet (Residual Neural Network), a deep learning architecture. Because of its capacity to efficiently train very deep neural networks while minimizing the vanishing gradient problem, the ResNet architecture has exhibited excellent performance in a variety of image recognition applications. Leveraging the power of ResNet, we developed a multi-class classification model capable of distinguishing between WBCs, RBCs, and platelets within microscopic images of blood smears. Our methodology involved preprocessing the blood smear images to enhance contrast and remove noise, followed by image segmentation to isolate individual blood cells and platelets. The segmented images were then used to train and fine-tune a ResNet model, utilizing a large annotated dataset of labeled blood cell images. The trained model exhibited remarkable accuracy in identifying and classifying different blood cell types, even in the presence of overlapping cells or artifacts. We extensively tested our suggested technique, on a range of blood smear images to evaluate its performance. The findings demonstrated that ResNet effectively identifies and categorizes WBCs, (RBCs) and platelets. When compared to methods our approach showcased superior accuracy, robustness and generalization capabilities. After training the model with the Resnet algorithm we got 92% of Accuracy.
Date: 2025
References: Add references at CitEc
Citations: View citations in EconPapers (1)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:dbk:sicomu:2025v3a3
DOI: 10.62486/sic2025193
Access Statistics for this article
More articles in Salud Integral y Comunitaria from AG Editor (Paraguay)
Bibliographic data for series maintained by Javier Gonzalez-Argote ().