Residual-based diagnostics for conditional heteroscedasticity models
Y. K. Tse ()
Econometrics Journal, 2002, vol. 5, issue 2, 358-374
Abstract:
We examine the residual-based diagnostics for univariate and multivariate conditional heteroscedasticity models. The tests are based on the parameter estimates of an autoregression with the squared standardized residuals or the cross products of the standardized residuals as dependent variables. As the regression involves estimated regressors the standard distribution theories of the ordinary least squares estimates do not apply. We provide the asymptotic variance of the regression estimates. Diagnostic statistics are constructed. A Monte Carlo experiment is conducted to investigate the finite-sample properties of the residual-based tests for both univariate and multivariate models. The results show that the residual-based diagnostics provide useful checks for model adequacy in both univariate and multivariate cases. Copyright Royal Economic Society, 2002
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (47)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ect:emjrnl:v:5:y:2002:i:2:p:358-374
Ordering information: This journal article can be ordered from
http://www.ectj.org
Access Statistics for this article
Econometrics Journal is currently edited by Richard J. Smith, Oliver Linton, Pierre Perron, Jaap Abbring and Marius Ooms
More articles in Econometrics Journal from Royal Economic Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley-Blackwell Digital Licensing () and Christopher F. Baum ().