Nondictatorial Arrovian Social Welfare Functions: An Integer Programming Approach
Francesca Busetto,
Giulio Codognato and
Simone Tonin
No 2015-21, SIRE Discussion Papers from Scottish Institute for Research in Economics (SIRE)
Abstract:
In the line opened by Kalai and Muller (1997), we explore new conditions on prefernce domains which make it possible to avoid Arrow's impossibility result. In our main theorem, we provide a complete characterization of the domains admitting nondictorial Arrovian social welfare functions with ties (i.e. including indifference in the range) by introducing a notion of strict decomposability. In the proof, we use integer programming tools, following an approach first applied to social choice theory by Sethuraman, Teo and Vohra ((2003), (2006)). In order to obtain a representation of Arrovian social welfare functions whose range can include indifference, we generalize Sethuraman et al.'s work and specify integer programs in which variables are allowed to assume values in the set {0, 1/2, 1}: indeed, we show that, there exists a one-to-one correspondence between solutions of an integer program defined on this set and the set of all Arrovian social welfare functions - without restrictions on the range.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10943/609
Our link check indicates that this URL is bad, the error code is: 404 Not Found
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:edn:sirdps:609
Access Statistics for this paper
More papers in SIRE Discussion Papers from Scottish Institute for Research in Economics (SIRE) 31 Buccleuch Place, EH8 9JT, Edinburgh. Contact information at EDIRC.
Bibliographic data for series maintained by Research Office ().