Comparison of hourly and daily reference crop evapotranspiration equations across seasons and climate zones in Australia
Kushan C. Perera,
Andrew W. Western,
Bandara Nawarathna and
Biju George
Agricultural Water Management, 2015, vol. 148, issue C, 84-96
Abstract:
Estimates from the FAO Penman–Monteith (FAO-PM) and the standardized ASCE Penman–Monteith (ASCE-PM) hourly and daily reference evapotranspiration (ET0) equations were compared at daily scale, based on the hourly climate data collected from forty (40) geographically and climatologically diverse Automatic Weather Stations (AWS) across the Australian continent. These locations represent 23 agricultural irrigation areas in tropical, arid and temperate climates. The aims of this paper are to: compare the effects of different methods of estimating Clear-sky-radiation—(Rso); compare sum-of-hourly and daily ET0; compare the results of aggregation of hourly ET0 over 24h compared with daylight hours; and examine the impact of seasonality and climate type. At selected AWS locations, the hourly ET0 was calculated using the hourly FAO-PM and the ASCE-PM equations and then summed to derive daily ET0 (reported as ET0,soh). This was compared against the daily ET0 values, calculated using the corresponding daily equation (reported as ET0,daily). Using Rso calculated following the “complex” approach improves the agreement between ET0,soh and ET0,daily of both hourly equations, compared with the “simple” approach. Better agreement between ET0,soh and ET0,daily estimates for the FAO-PM and ASCE-PM were found, when the hourly values are aggregated over 24h rather than over daylight hours. The average ratio between ET0,soh and ET0,daily for the FAO-PM and ASCE-PM equations is 0.95 and 1.00, respectively. The range of the former is 0.90–0.98 and that of the latter is 0.96–1.04. There was very strong correlation between the two hourly equations at the daily time step: on average 0.997, with a range of 0.993–0.998. The results imply that the ASCE-PM hourly equation's daily ET0 values are higher than those of FAO-PM, which can be explained by the difference in the treatment of surface resistances. Better agreements between ET0,soh and ET0,daily values for winter, spring and autumn were found for the FAO-PM version, while during summer, the ASCE-PM version showed better agreement. The best agreement between the hourly and daily results for the FAO-PM version was found in temperate climates and the ASCE-PM version showed best agreement in the tropical and arid climates.
Keywords: Reference evapotranspiration; ET0; FAO-56; ASCE-PM; Hourly ET0; Daily ET0 (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037837741400287X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:148:y:2015:i:c:p:84-96
DOI: 10.1016/j.agwat.2014.09.016
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().