Assessing a crop water stress index derived from aerial thermal imaging and infrared thermometry in super-high density olive orchards
Gregorio Egea,
Carmen M. Padilla-Díaz,
Jorge Martinez-Guanter,
José E. Fernández and
Manuel Pérez-Ruiz
Agricultural Water Management, 2017, vol. 187, issue C, 210-221
Abstract:
Characterization of the spatio-temporal variability of tree water status is a prerequisite to conducting precise irrigation management in fruit tree orchards. This study assessed the suitability of a crop water stress index (CWSI) derived from high-resolution aerial thermal imagery for estimating tree water status variability in super high density (SHD) olive orchards. The experiment was conducted at a commercial SHD olive orchard near Seville (southwestern Spain), with drip irrigated trees under three irrigation treatments (four plots per treatment in a randomized block design): a full irrigation treatment to replace the crop water needs (ETc) and two regulated deficit irrigation treatments to replace ca. 45% of ETc. Meteorological variables, soil moisture content, leaf water potential, stem water potential and leaf gas exchange measurements were performed along the irrigation season. Infrared temperature sensors (IRTs) installed approximately 1m above the canopies were used to derive the required Non-Water-Stressed Baselines (NWSBs) for CWSI calculation. NWSBs were not common during the growing season, although the seasonal effect could be partly explained with solar angle variations. A thermal camera installed on a mini Remotely Piloted Aircraft System (RPAS) allowed for the recording of high-resolution thermal images on 5 representative dates during the irrigation season. The CWSI values derived from aerial thermal imagery were sensitive to the imposed variations in tree water status within the SHD olive orchard. Among the recorded variables, maximum stomatal conductance showed the tightest correlation with CWSI. We concluded that high-resolution thermal imagery captured from a mini RPAS is a suitable tool for defining tree water status variability within SHD olive orchards.
Keywords: CWSI; Olea europaea; Precision irrigation; Spatial variability; Transpiration (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037837741730121X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:187:y:2017:i:c:p:210-221
DOI: 10.1016/j.agwat.2017.03.030
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().