EconPapers    
Economics at your fingertips  
 

Simulation of soil water movement under subsurface irrigation with porous ceramic emitter

Yaohui Cai, Pute Wu, Lin Zhang, Delan Zhu, Junying Chen, ShouJun Wu and Xiao Zhao

Agricultural Water Management, 2017, vol. 192, issue C, 244-256

Abstract: Subsurface irrigation has been achieved by using ceramic emitters, pitchers, pots and ceramic tubes, which have gained a certain degree of interest in arid regions due to their efficient use of water. Research on the formation of wetting patterns around the ceramic emitter is essential for the design of irrigation system. In this study, numerical simulations were carried out to investigate the effects of emitter installation method, emitter buried depth, emitter structural parameters, irrigation doses and initial soil water content on the wetting patterns in clay loam with Hydrus-2D. Finally, two field application experiments were conducted to test the practicality and reliability of simulation results. The simulation results were in good agreement with the experimental data. Results showed, emitter installation method had the least effect on the wetting pattern. A 25cm buried depth would be suit for irrigating vegetables, a 45cm deep buried depth would suit for irrigating fruit trees. The structure parameters had a significant effect on cumulative fluxes and horizontal wetting front, the structural parameters (emitter length is 7.00cm, emitter external diameter is 1.25cm, and emitter inner diameter is 0.60cm) would be a better fabricate parameters for ceramic emitter. Wetting front increased with increasing irrigation doses and initial water content. To prevent percolation, when the initial water content was high, it should be better to cut down the irrigation duration of ceramic emitter. The field results indicated that Hydrus-2D could be used to investigate the suitable parameters for ceramic emitter in subsurface irrigation systems and determine the suitable arrangement and operation mode of ceramic emitter.

Keywords: Ceramic emitter; Hydrus-2D; Wetting pattern; Structure parameters; Buried depth; Installation method (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377417302275
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:192:y:2017:i:c:p:244-256

DOI: 10.1016/j.agwat.2017.07.004

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:192:y:2017:i:c:p:244-256