EconPapers    
Economics at your fingertips  
 

Effects of water table management and row width on the growth and yield of three soybean cultivars in southwestern Japan

Naoki Matsuo, Masakazu Takahashi, Tetsuya Yamada, Motoki Takahashi, Makita Hajika, Koichiro Fukami and Shinori Tsuchiya

Agricultural Water Management, 2017, vol. 192, issue C, 85-97

Abstract: In southwestern Japan, soil water fluctuations from flooding to drought cause unstable soybean yields. Water table management (WTM) with sub-irrigation/drainage systems will overcome the soybean yield instability by inhibiting these fluctuations. Narrow row cultivation is expected to increase soybean yields. The effects of WTM and row width on soybean growth and yield in this region are not clear. We evaluated the effects of WTM with sub-irrigation/drainage systems and row widths (35 or 70cm) on the growth and yield of one conventional (tall main stem) and two newly developed (short main stem) soybean cultivars. The WTM consisted of (1) fluctuation of the water table between the natural water table depth and that at 30cm depth according to the growth stage and weather conditions, especially rainfall events (newly developed); (2) maintaining the water table at a 30cm constant depth throughout the growth period (recommended in Japan); and (3) the natural water table with an underdrain (control). No significant interaction was observed between the WTM and cultivar or row width treatment, indicating that cultivars and row width treatments responded similarly to WTM. WTM 1 and 2 decreased the soybean yield by approx. 5% when the natural water table depth in control existed at 50–60cm depths throughout the growing period, indicating that the natural water table depth in control was near optimum for soybean growth and yield. Before performing WTM, therefore, the natural water table depth should be measured and considered. The combination of newly developed cultivars with narrow rows had similar or greater yields than conventional cultivation (cultivar and row width), due mainly to an increase in pods m−2 and a decrease in yield loss without severe lodging. Thus, yield potential in southwestern Japan could be increased by narrow row cultivation, but cultivars with short main stem lengths should be cultivated.

Keywords: Growth; Row width; Soybean; Water table management; Yield (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377417302238
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:192:y:2017:i:c:p:85-97

DOI: 10.1016/j.agwat.2017.06.024

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu (repec@elsevier.com).

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:192:y:2017:i:c:p:85-97