Semi-arranged demand as an energy saving measure for pressurized irrigation networks
I. Fernández García,
R. González Perea,
M.A. Moreno,
P. Montesinos,
E. Camacho Poyato and
J.A. Rodríguez Díaz
Agricultural Water Management, 2017, vol. 193, issue C, 22-29
Abstract:
In many regions, water resource scarcity has required adapting irrigated agriculture towards more efficient water distribution networks and irrigation systems. These systems, however, have higher energy requirements. To overcome this problem, a new semi-arranged demand model combining network sectoring and critical points have been developed. The model computes a new indicator known as the optimal number of disabled hydrants (ONDHY) to determine the number of critical hydrants in the sector that are only allowed to irrigate at off-peak hours, while the rest of non-critical hydrants can irrigate at any time. The proposed model has been applied to each of the 11 irrigation networks in the Bembezar MD irrigation district located in southern Spain. The results showed potential energy savings of 5.6%–25.8% with 14.5% and 7.8% of critical hydrants that could only operate during off-peak hours, respectively, thus satisfying crop irrigation requirements. The proposed methodology is a useful and easy tool to optimize energy consumption in pressurized irrigation networks.
Keywords: Pressurized irrigation networks; Energy efficiency; Irrigation management (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377417302548
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:193:y:2017:i:c:p:22-29
DOI: 10.1016/j.agwat.2017.07.025
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().