Identifying drought-tolerant genotypes of barley and their responses to various irrigation levels in a Mediterranean environment
Elsayed Mansour,
Mohamed I Abdul-Hamid,
Mohamed T Yasin,
Naglaa Qabil and
Ahmed Attia
Agricultural Water Management, 2017, vol. 194, issue C, 58-67
Abstract:
Improved water use efficiency (WUE) for barley (Hordeum vulgare L.) production in the arid and semiarid regions is necessary to save the limited water resources available for irrigation. A field study was conducted in 2014–2015 and 2015–2016 growing seasons on sandy soil under drip irrigation system. Objectives were to identify drought-tolerant genotypes of barley that are less susceptible to water stress and determine the impact of various irrigation levels on yield attributes, grain yield, WUE of those genotypes compared with drought-sensitive genotypes in an arid Mediterranean latitude. Treatments included four irrigation levels (severely-low 120mm, low 240mm, medium 360mm, and high 480mm) and seventeen barley genotypes. Plants exposed to water stress showed significant plant height and yield attributes decrease compared with well-watered plants. The high irrigation level had the greatest grain yield of 4284kgha−1 and lowest WUE of 6.7kgha−1mm−1. The WUE of aboveground biomass was also decreased to 16.2kgha−1mm−1 for the high irrigation level compared with 28.3kgha−1mm−1 for the severely-low irrigation level. Drought-tolerant genotypes managed to produce more yield with higher WUE compared with drought-sensitive genotypes. Maximum grain yield of 4966kgha−1 was obtained at 482mm of irrigation water for drought-tolerant genotypes while drought-sensitive genotypes had maximum grain yield of 3513kgha−1 at 561mm of irrigation water. These results suggest that improved irrigation management using drip irrigation system and the use of drought-tolerant genotypes can increase water productivity to conserve the limited water resources in arid Mediterranean environments.
Keywords: Barley; Irrigation management; Genotypes; Water use efficiency; Cluster analysis; Mediterranean environment (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377417302858
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:194:y:2017:i:c:p:58-67
DOI: 10.1016/j.agwat.2017.08.021
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().