EconPapers    
Economics at your fingertips  
 

Identifying best crop management practices for chickpea (Cicer arietinum L.) in Northeastern Ethiopia under climate change condition

Adem Mohammed, Tamado Tana, Piara Singh, Adamu Molla and Ali Seid

Agricultural Water Management, 2017, vol. 194, issue C, 68-77

Abstract: Chickpea (Cicer arietinum L.) is one of the important cool season food legumes in the semi-arid northeastern Ethiopia; however, its productivity is adversely affected by a number of abiotic and biotic factors. The objectives of this study were to assess impacts of projected climate change on grain yield of chickpea by 2030s (2020–2049) and 2050s (2040–2069) and to identify crop management options that increase productivity of the crop. The CROPGRO-chickpea model in DSSAT (Decision Support System for Agrotechnology Transfer) was used to assess impacts of projected climate change on chickpea and to identify adaptation options. The crop model was first calibrated and evaluated in the study area for simulating growth, yield and water balance of the soil. The result of the model calibration and evaluation showed that there were close agreement between the simulated and observed values that showed the performance of the model to simulate growth, phenology and yield of chickpea under semi-arid northeastern Ethiopian condition. The calibrated model was used to assess impacts of projected climate changes on chickpea and identify crop management options. The impact of projected climate change was assessed for 2030s and 2050s time periods under all the RCPs with and without CO2 fertilization. To identify crop management options, different varieties of chickpea, supplemental irrigation and change in planting dates have been evaluated. The result of climate change impact analysis on chickpea showed that grain yield is predicted to significantly increase both by 2030s and 2050s under CO2 fertilization condition across all the RCPs as compared to baseline grain yield (1961–1990). However, simulation without CO2 showed that grain yield will not significantly increase by 2030s and 2050s across all the scenarios. Based on the prediction result it can be generalized that chickpea will be benefited from the projected climate changes in northeastern Ethiopia. According to the simulation result application of two supplemental irrigation (flower initiation and pod setting stages) and early sowing significantly (P<0.05) increase grain yield of chickpea in northeastern Ethiopia under the present and future climate conditions. Selection of appropriate cultivars based on the agroecology of the area has paramount important to increase chickpea productivity under the present and future climate condition.

Keywords: Chickpea; Climate change; CROPGRO-chickpea model; Drought; DSSAT (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377417302871
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:194:y:2017:i:c:p:68-77

DOI: 10.1016/j.agwat.2017.08.022

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:194:y:2017:i:c:p:68-77