Detecting subsurface drainage pipes using a fully convolutional network with optical images
Homin Song,
Dong Kook Woo and
Qina Yan
Agricultural Water Management, 2021, vol. 249, issue C
Abstract:
More than half of croplands in the Midwestern United States are equipped with subsurface drainage pipes to reduce excess water in productive but wet areas. The use of drainage systems not only reduces subsurface water table to prevent waterlogging and flooding but also increases nutrient losses by developing artificial preferential flow paths. The exact locations of subsurface drainage pipes are thus imperative to manage and monitor water quality and nonpoint source pollution. However, such data are not widely available due to private ownership. Previous studies used conventional image filtering methods, thermal images, and ground penetration radar to detect subsurface drainage pipes. Due to surface features, such as furrow and depressions, and their limited data availability, these experiments did not provide a robust approach to identify subsurface drainage pipes over a large area. To overcome these limitations, in this study, we propose a subsurface drainage pipe detection approach based on deep learning with optical images. Our deep learning approach uses a fully convolution network (FCN) architecture that takes an optical image patch as an input and gives an output of pixel-wise drainage pipe detection map. The FCN was trained and validated using optical image datasets obtained from a freeware Google Earth that provides temporally and spatially abundant data. The trained FCN was then applied to large-scale drainage pipe detection tasks to evaluate its performance. The performance comparison between the proposed deep learning approach and conventional image processing techniques (Sobel and Canny edge detection methods) was also carried out. The results demonstrate that the proposed deep learning approach shows accurate and robust drain line detection performance with an average Dice coefficient of 0.58 for validation sets, providing superior performance over the conventional image processing techniques.
Keywords: Deep learning; Drainage pipe; Nitrogen loss; Optical images; Image processing (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377421000561
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:249:y:2021:i:c:s0378377421000561
DOI: 10.1016/j.agwat.2021.106791
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().