Implementing a new texture-based soil evaporation reduction coefficient in the FAO dual crop coefficient method
Abdelhakim Amazirh,
Olivier Merlin,
Salah Er-Raki,
Elhoussaine Bouras and
Abdelghani Chehbouni
Agricultural Water Management, 2021, vol. 250, issue C
Abstract:
Crop evapotranspiration (ET) is a fundamental component of the hydrological cycle, especially in arid/semi-arid regions. The FAO-56 offers an operational method for deriving ET from the reduction (dual crop coefficient Kc) of the atmospheric evaporative demand (ET0). The dual coefficient approach (FAO-2Kc) is intended to improve the daily estimation of ET by separating the contribution of bare soil evaporation (E) and crop transpiration components. The FAO-2Kc has been a well-known reference for the operational monitoring of crop water needs. However, its performance for estimating the water use efficiency is limited by uncertainties in the modeled evaporation/transpiration partitioning. This paper aims at improving the soil module of the FAO-2Kc by modifying the E reduction coefficient (Kr) according to soil texture information and state-of-the-art formulations, hence, to amend the mismatch between FAO-2Kc and field-measured data beyond standard conditions. In practice this work evaluates the performance of two evaporation models, using the classical Kr (Kr,FAO) and a new texture-based Kr (Kr,text) over 33 bare soil sites under different evaporative demand and soil conditions. An offline validation is investigated by forcing both models with observed soil moisture (θs) data as input. The Kr,text methodology provides more accurate E estimations compared to the Kr,FAO method and systematically reduces biases. Using Kr,text allows reaching the lowest root means square error (RMSE) of 0.16 mm/day compared to the Kr,FAO where the lowest RMSE reached is 0.88 mm/day. As a step further in the assessment of the proposed methodology, ET was estimated in three wheat fields across the entire agricultural season. Both approaches were thus inter-compared in terms of ET estimates forced by SM estimated as a residual of the water balance model (online validation). Compared to ET measurements, the new formulation provided more accurate results. The RMSE was 0.66 mm/day (0.71 mm/day) and the R2 was 0.83 (0.78) for the texture-based (classical) Kr.
Keywords: FAO-2Kc; Soil evaporation; Soil texture; Soil moisture; Evapotranspiration (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377421000925
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:250:y:2021:i:c:s0378377421000925
DOI: 10.1016/j.agwat.2021.106827
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().