EconPapers    
Economics at your fingertips  
 

Reconstruction of remotely sensed daily evapotranspiration data in cloudy-sky conditions

Lisheng Song, Sayed M. Bateni, Yanhao Xu, Tongren Xu, Xinlei He, Seo Jin Ki, Shaomin Liu, Minguo Ma and Yang Yang

Agricultural Water Management, 2021, vol. 255, issue C

Abstract: The unavailability of thermal infrared satellite observations in cloudy conditions has limited the spatial distribution and temporal coverage of remotely sensed evapotranspiration (ET) data. As a result, a number of approaches have been developed to reconstruct remotely sensed daily ET data in cloudy-sky conditions. Despite the wide application of these approaches, no work has been conducted to compare their performance over a wide variety of climatic and vegetative conditions. In this study, three commonly used ET reconstruction approaches namely, reference ET fraction (EToF), land surface temperature reconstruction (LSTR), and variational data assimilation (VDA) are used to obtain daily ET data under cloudy conditions. The abovementioned three approaches are applied to the Heihe River Basin (HRB) in the northwest of China during the growing season in 2015. The HRB covers an area of approximately 1,432,000 km2 and contains various land covers. The large aperture scintillometer (LAS) and eddy covariance (EC) measurements are used to evaluate performance of the abovementioned three methods over the grassland, cropland, and riparian forest sites in the HRB. The results show that the EToF approach underestimates ET at the grassland and riparian sites in cloudy days because of the negatively biased ET/ETo (where ETo is the reference evapotranspiration) in clear-sky days. The VDA approach overestimates ET in cloudy-sky conditions because of the overpredicted evaporative fraction values. The LSTR approach overestimates ET due to the under-reconstructed LST in cloudy day. The mean absolute percentage difference (MAPD) and root mean square error (RMSE) statistical metrics are used to compare performance of the three approaches The LSTR (MAPD = 43.1% and RMSE = 1.3 mm/day) and VDA (MAPD = 46.7% and RMSE = 1.4 mm/day) approaches slightly outperform EToF (MAPD = 46.6% and RMSE = 1.5 mm/day). The RMSEs of reconstructed ET values by EToF, VDA, and LSTR increase respectively from 1.6, 1.2, and 1.5 (mm/day) to 2.2, 1.9, and 2.0 (mm/day) as the number of consecutive cloudy days increases from 1 to 3. These outcomes suggest that synergistic use of space-borne microwave and thermal infrared LST observations into remote sensing-based ET methods can improve the reconstruction of ET data under cloudy conditions.

Keywords: Evapotranspiration; Cloudy day reconstruction; Remote sensing (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377421002651
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:255:y:2021:i:c:s0378377421002651

DOI: 10.1016/j.agwat.2021.107000

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:255:y:2021:i:c:s0378377421002651