EconPapers    
Economics at your fingertips  
 

Assessing the hydraulic reduction performance of HYDRUS-1D for application of alkaline irrigation in variably-saturated soils: Validation of pH driven hydraulic reduction scaling factors

Aram Ali, John McL Bennett, Andrew A.J. Biggs, Alla Marchuk and Afshin Ghahramani

Agricultural Water Management, 2021, vol. 256, issue C

Abstract: Land application of alkaline irrigation water is an increasing practice in most agricultural lands around the world due to the shortage of freshwater resources. Accurate evaluation of the effects of alkalinity on soil properties is essential to avoid environmental risks. In this study, we used long leaching columns to evaluate alkalinisation and sodification hazards in soils in the laboratory at different water qualities (0, 100, 310 and 650 HCO3-, mg L−1) with electrical conductivity (EC) ≈ 2.1 dS m−1 and sodium adsorption ratio (SAR) ≈ 12 (mmolc L−1)0.5. The ability of the HYDRUS-1D model to simulate solute and water movement under unsaturated conditions in columns of 40 cm height filled with acidic, neutral or alkaline soils was also assessed. Changes in soil EC, SAR, pH and alkalinity were monitored at 5, 15, 25 and 35 cm depths for 290 days. Increased solution alkalinity resulted in increased pH, alkalinity and sodicity within the soil profile, in particular for the soil surface and acidic soils. In general, the HYDRUS model, using the standard hydraulic reduction scaling factor, was able to simulate the effects of alkalinity in the soil profile and the associated hydraulic conductivity reduction. Amending the pH driven hydraulic reduction scaling factor in the model to a non-linear, soil-specific, pedotransfer function significantly improved the correlation between predicted and observed hydraulic conductivity. The findings of this study provide validation for a non-linear approach towards determining the pH hydraulic reduction scaling factor in the HYDRUS-1D model for unsaturated conditions. However, it is noted that further improvement of this non-linear approach is required to incorporate other factors governing soil structural stability.

Keywords: Alkalinity; Unsaturated condition; Sodicity; Hydraulic conductivity; Solute movement; HYDRUS-1D (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377421003668
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:256:y:2021:i:c:s0378377421003668

DOI: 10.1016/j.agwat.2021.107101

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:256:y:2021:i:c:s0378377421003668