EconPapers    
Economics at your fingertips  
 

Development and application of a new package for MODFLOW-LGR-MT3D for simulating regional groundwater and salt dynamics with subsurface drainage systems

Yang Yang, Yan Zhu, Jingwei Wu, Wei Mao, Ming Ye and Jinzhong Yang

Agricultural Water Management, 2022, vol. 260, issue C

Abstract: Subsurface drainage systems have been widely used to help manage soil salinization worldwide. However, designing a subsurface drainage system requires predictions of regional groundwater and salt dynamics. While these dynamics can be obtained using MODFLOW’s drain package (DRN), this package requires that the drain conductance be specified, which is difficult to determine for subsurface drainage systems with different layout parameters, including the pipe spacing, depth and radius. In this study, a new subsurface drainage (SDR) package based on the Hooghoudt equation was developed within the MODFLOW-LGR-MT3D framework to simulate the effects of subsurface drainage pipes on groundwater flow and salt dynamics. The accuracy and applicability of SDR were tested by a synthetic case, a published indoor experiment and two field experiments. Comparison with indoor experimental data shows that the RRMSE of cumulative drainage volume was 5.08% and the RRMSE of groundwater table depth was 3.69%. The simulation results of outdoor experiment show that the RRMSE of drainage volumes of a single pipe ranged from 3.14% to 4.69%, and the relative errors of cumulative drainage volumes were below 6% and the relative errors of drainage discharge were 3.1–16.3%. The results demonstrate that SDR can accurately simulate leaching water and solute transport under transient flow conditions. The model was then applied to the Yonglian irrigation area of Inner Mongolia, China, for subsurface drainage system design, and 3 different layout schemes of subsurface drainage systems were presented. The total salt discharge increased by 38–54% after the application of the subsurface drainage system, 36–45% of which was discharged by subsurface drainage pipes. This study provides a pilot example for regional subsurface drainage system design.

Keywords: Subsurface drainage package; Hooghoudt equation; Soil salinity; Groundwater and salt modelling; MODFLOW-LGR-MT3D (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377421006077
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:260:y:2022:i:c:s0378377421006077

DOI: 10.1016/j.agwat.2021.107330

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:260:y:2022:i:c:s0378377421006077