Prediction of maize crop coefficient from UAV multisensor remote sensing using machine learning methods
Guomin Shao,
Wenting Han,
Huihui Zhang,
Liyuan Zhang,
Yi Wang and
Yu Zhang
Agricultural Water Management, 2023, vol. 276, issue C
Abstract:
In the upcoming irrigation management in agricultural production, accurate mapping of crop water consumption with a high spatial and temporal resolution at a farm scale is needed. In this study, we developed models for crop coefficients (Kc) estimation using unmanned aerial vehicle (UAV) remote sensing and machine learning (ML) techniques for irrigated maize in a semi-arid region in Northwest China. Kc values were calculated using a procedure given in FAO56 manual using field measurements. Multispectral vegetation indices (VIs), vegetation fraction (VF), thermal-based VIs, and texture information (TI) were derived from UAV-based multispectral, RGB, and thermal infrared imagery, respectively. These remotely sensed variables and their combinations were used to develop prediction models using six ML algorithms (linear regression-LR, polynomial regression-PR, exponential regression-ER, random forest regression-RFR, support vector regression-SVR, and deep neural network-DNN). Among these models, the RFR with the highest accuracy (R2 = 0.69, RMSE = 0.1019) was recommended to estimate maize Kc. The multispectral and thermal-based VIs and texture of the near-infrared band had greater contributions than RGB-based VF and TI in the Kc-RFR model under different irrigation treatments. Furthermore, the maize Kc-RFR prediction model had high accuracy in estimating cumulative evapotranspiration (R2 = 0.89, RMSE = 15.0 mm/stage) during different growth stages and daily soil water content (R2 = 0.85, RMSE = 0.0089 m3/m3) in the root zone. These results show that the integration of UAV remote sensing and ML provides a promising tool to help farmers make decisions using timely mapped crop water consumption, especially under water shortages or drought conditions.
Keywords: Crop water requirement; FAO56; Evapotranspiration; UAV; Crop coefficient; Random Forest regression (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377422006114
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:276:y:2023:i:c:s0378377422006114
DOI: 10.1016/j.agwat.2022.108064
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().