EconPapers    
Economics at your fingertips  
 

Interactive effect of water regime, nitrogen rate and biostimulant application on physiological and biochemical traits of wild rocket

Vincenzo Candido, Francesca Boari, Vito Cantore, Donato Castronuovo, Michele Denora, Lucrezia Sergio, Mladen Todorovic and Maria Immacolata Schiattone

Agricultural Water Management, 2023, vol. 277, issue C

Abstract: A research was carried out to evaluate the biostimulating effects of Azoxystrobin (Azo+) and a brown seaweed extract (SW+) on wild rocket grown during two crop cycles in pots placed in a cold greenhouse. Two watering regimes were applied (restoring 50% and 100% of crop evapotranspiration, indicated respectively WR50 and WR100) along with three N levels (0, 75 and 150 kg ha−1 of N). The experimental layout was a split-split plot with three replications, arranging water regimes in the main plots, N levels in the plots and biostimulants in the sub-plots. The paper reports the results related to the effects on i) leaf chlorophyll content (Chl), ii) parameters related to gas exchanges including net assimilation (A), transpiration (T), stomatal conductance (gs), internal CO2 concentration (Ci) and intrinsic water use efficiency (WUEi), iii) some enzymes involved in oxidative stress including superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), catalase (CAT). The water deficit led to a drop in A and T, an increase in WUEi and in the antioxidant enzymes content of wild rocket. Chl rised with the N availability increase. The increase in N level caused the rise of A and T in WR100 while it exacerbated the negative effect of water deficit in WR50. Azo+ caused 15.0% increase in A, 13.4% drop in gs and 33.5% rise in WUEi. Additionally, Azo+ increased by 8.7% Chl and by 489%, 112%, 193%, and 336% SOD, POD, APX and CAT, respectively. SW+ improved A (+7.9%), WUEi (+14.9%), Chl (+6.1%), SOD (+395%), POD (+160%), APX (+155%) and CAT (+334%). The increase in antioxidant enzymes after the application of Azo+ and SW+ was greater under water deficit. The wild rocket benefited of Azo+ and SW+ application, which stimulated the biosynthesis of chlorophyll and antioxidant enzymes, demonstrating the potential role in limiting water stress. Therefore, the two biostimulants can represent a useful tool to improve the production of wild rocket and increase the water use efficiency.

Keywords: Seaweed; Azoxystrobin; Diplotaxis tenuifolia; Gas exchange; Chlorophyll; Antioxidant enzymes (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377422006229
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:277:y:2023:i:c:s0378377422006229

DOI: 10.1016/j.agwat.2022.108075

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:277:y:2023:i:c:s0378377422006229