Hydrogeology and subsurface water flow beneath grass waterways: Implications for exploiting waterways for nitrate reductions
Keith E. Schilling,
Matthew T. Streeter,
Valerie Gibertini-Diaz,
Eustice Betret and
Antonio Arenas-Amado
Agricultural Water Management, 2024, vol. 298, issue C
Abstract:
Although grass waterways are an effective conservation practice to reduce soil erosion, less is known about their subsurface hydrogeology. New research is highlighting the potential for NO3-N load reductions in waterways, but studies have not been done to characterize regional patterns. In this study, we used field investigation and numerical modeling to evaluate subsurface hydrogeological conditions beneath grass waterways found in major landform regions of Iowa. Our goal was to identify waterways that could be best utilized in a new conservation practice aimed at reducing tile NO3-N export from cropped fields. Waterway stratigraphy consisted of a layer of fine-textured, nutrient-rich sediment overlying glacial or post-glacial parent material. The mean hydraulic conductivity (K) of the alluvial sediments reflected a dominantly silty matrix and it was highest in northeast Iowa where sand contents were higher. Groundwater was largely anaerobic in lowland waterway areas, where high water tables contributed to low dissolved oxygen and NO3-N concentrations in shallow groundwater. Numerical modeling parameterized using the field data showed that in terms of annual water balance, more water is exported from grass waterways in surface runoff compared to subsurface tile and groundwater flow. In terms of subsurface flow, tile water yields were higher in smaller and steeper catchments and when the K of the waterway alluvium was higher. Based on regional patterns of sedimentology and landscape topography, smaller and steeper catchments within a landform region found in NE Iowa may be most appropriate to test a new conservation practice aimed to capture and remediate tile NO3-N export from grass waterways.
Keywords: Grass waterway; Nitrate-nitrogen; Surface-subsurface model; Hydraulic conductivity; Iowa (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377424001823
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:298:y:2024:i:c:s0378377424001823
DOI: 10.1016/j.agwat.2024.108847
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().