EconPapers    
Economics at your fingertips  
 

Irrigation of young grapefruits with desalinated seawater: Agronomic and economic outcomes

Alberto Imbernón-Mulero, Belén Gallego-Elvira, Victoriano Martínez-Alvarez, José A. Acosta, Vera Antolinos, Juan M. Robles, Josefa M. Navarro and José F. Maestre-Valero

Agricultural Water Management, 2024, vol. 299, issue C

Abstract: Given the current scarcity of freshwater resources, it is imperative to explore new agricultural management options to sustainably enhance food production. Desalinated seawater (DSW) presents a promising solution for irrigation in water-stressed regions. However, its application in perennial crops has been poorly assessed, potentially posing challenges to existing cultivation practices due to higher associated costs, salinity, and the presence of potentially harmful elements, notably boron (B). To address these uncertainties, a three-year experiment was conducted to evaluate the short-term effects of irrigation with DSW on a ‘Rio Red’ grapefruit orchard. Four irrigation treatments were assessed: DSW, freshwater (FW), a 1:1 mixture of DSW and FW (MW), and DSW with reduced B concentration (DSW–B). At present, the young age of the trees (3.5 years) and their grafting onto a five-year-old rootstock at the beginning of the experiment likely facilitated rapid foliar mass development and prevented the accumulation of phytotoxic elements up to critical levels. However, local DSW consistently exceeded recommended citrus thresholds for B (0.5 mg L–1), sodium (Na+; 115 mg L–1), and chloride (Cl–; 250 mg L–1) in irrigation water, resulting in significant concentrations of B (2.1 mg kg–1), Na+ (504 mg L–1) and Cl– (476 mg L–1) in soil. Moreover, these levels led to concentrations in leaves close to defined thresholds in the case of Na+ (0.25 g 100 g–1), and exceeded them in the case of B (>250 mg kg–1). Although fruit quality remained unaffected, variability in yield among trees and the cost disparity between water resources, resulted in slight fluctuations in the income-outcome balance during initial cultivation years. Our findings offer insights into the irrigation of sensitive crops with DSW, aimed at mitigating potential soil and plant harm from early accumulation of phytotoxic elements. Further research is warranted to explore the impact of both single and sustained DSW usage for irrigation purposes.

Keywords: Water management; Citrus production; Soil sodicity; Phytotoxicity; Water scarcity (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377424002129
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:299:y:2024:i:c:s0378377424002129

DOI: 10.1016/j.agwat.2024.108877

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:299:y:2024:i:c:s0378377424002129