AquaCrop model-based sensitivity analysis of soil salinity dynamics and productivity under climate change in sandy-layered farmland
Zhuangzhuang Feng,
Qingfeng Miao,
Haibin Shi,
José Manuel Gonçalves,
Xianyue Li,
Weiying Feng,
Jianwen Yan,
Dandan Yu and
Yan Yan
Agricultural Water Management, 2025, vol. 307, issue C
Abstract:
To improve the simulation accuracy and efficiency of crop water models in semi-arid regions and considering climate change, we conducted a sensitivity analysis of the AquaCrop model crop parameters for maize (Zea mays) based on field monitoring data from 2020 to 2021 in the Hetao Irrigation District, China. We simulated soil water and salt dynamics, crop growth, water consumption, and final yield under climate change conditions. Non-conservative parameters, such as the crop growth coefficient (CGC) and maximum effective rooting depth (Zx), significantly influenced soil water content and salt profile sensitivity. Zx was highly sensitive to soil salt content. For maize biomass and yield, maximum canopy cover (CCx) and CGC consistently showed high sensitivity. The standard crop transpiration coefficient (KcTr,x) had a significant impact on yield. Water productivity (WPET) and harvest index (HI) were mainly sensitive to CCx, KcTr,x, normalized water productivity (WP*), and reference HI (HI0). The model simulations, calibrated with these sensitive parameters, indicated that under future climate change scenarios, maize yield is projected to increase by approximately 19 % by mid-21st century due to elevated CO2 concentrations and water productivity increasing by 22–27 %. Soil salinity is expected to rise by 0.2 t ha−1 under high-emission scenarios, indicating that the challenge of soil salinization will become more severe. This study provides scientific evidence for developing agricultural management strategies to adapt to climate change, with the aim of enhancing crop yield and water-use efficiency, thus promoting sustainable agricultural development.
Keywords: salinization; parameter sensitivity analysis; sand layer soil; climate change; soil water-salt balance; crop water productivity (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377424005808
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:307:y:2025:i:c:s0378377424005808
DOI: 10.1016/j.agwat.2024.109244
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().