EconPapers    
Economics at your fingertips  
 

Evaluating the impact of floating spheres on evaporation reduction and water salinity control in reservoirs

Guo-chen Hao, Ke-Bin Shi and Ke-wu Han

Agricultural Water Management, 2025, vol. 312, issue C

Abstract: The construction of simple reservoirs in arid regions helps meet the water demands for agricultural irrigation, industry, and domestic use, while also alleviating local water shortages and related issues. However, environmental concerns associated with reservoir development are becoming more evident. For instance, the stored water is gradually becoming saline. Studies suggest that reducing water evaporation over extended periods can effectively lower the salt concentration in the water. Currently, there is limited research on salt migration in reservoir water when covered with anti-evaporation materials. Given the potential impact of these materials on the water environment and hydrodynamic conditions, this study seeks to examine the spatiotemporal distribution patterns of reservoir mineralization under such covering. To this end, laboratory and field experiments were conducted to analyze the impact of covering the water surface with floating high-density polyethylene spheres to reduce evaporation and its effect on water salinity. These experiments included monitoring water temperature, dissolved oxygen, pH, sediment resuspension, and water conductivity, as well as calculating the contribution of sediment release and evapotranspiration to the increase in salinity concentration within the water column. This study investigates the role of floating high-density polyethylene (HDPE) spheres in reducing reservoir evaporation and mitigating water salinity. Laboratory and field experiments assessed the effects of different coverage levels (0 %-74.98 %) on evaporation rates, sediment resuspension, and water chemistry. The findings indicate that covering 74.98 % of the reservoir surface led to a 28.97 % reduction in salinity (p < 0.05) over one irrigation cycle. Evaporation inhibition varied from 13.56 % to 60.19 %, depending on coverage. However, floating spheres exhibited reduced effectiveness at high wind speeds (>10.7 m/s), highlighting the need for additional containment strategies. Future research should explore long-term durability, ecological impact, and cost-effectiveness of large-scale deployment.

Keywords: Plain reservoir; Floating spheres; Evaporation; Water salinization (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377425001544
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:312:y:2025:i:c:s0378377425001544

DOI: 10.1016/j.agwat.2025.109440

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-04-30
Handle: RePEc:eee:agiwat:v:312:y:2025:i:c:s0378377425001544