EconPapers    
Economics at your fingertips  
 

Modeling soil water and salinity dynamics in mangrove swamp rice production system of Guinea Bissau, West Africa

Gabriel Garbanzo, Maria do Rosário Cameira, Paula Paredes, Marina Temudo and Tiago B. Ramos

Agricultural Water Management, 2025, vol. 313, issue C

Abstract: Mangrove swamp rice production (MSRP) is of fundamental importance for the livelihoods, food security, and nutritional well-being of coastal populations in West Africa. However, this system faces increasing challenges due to its reliance on sufficient and well-distributed rainfall to maintain feasible soil salinity levels for rice production during the growing season. This study examines the dynamics of soil water and salts using field observations collected from four different MSRP fields in Guinea-Bissau during two growing seasons, along with simulations using the HYDRUS-1D model. Several rainfall and groundwater depth scenarios were also considered to identify the key factors contributing to soil salinity at the study sites. The results helped identify the main factors influencing soil salinity during the study period and estimate the potential impacts on crop yields, with could decline by up to 60 %. Key factors influencing soil salinity included the amount and distribution of seasonal rainfall, groundwater depth, and groundwater quality. The analysis of modeled scenarios also provided insights into effective management strategies for coping with soil salinization, particularly by assessing: a) where and when more productive, long-cycle rice varieties can still be cultivated; b) where salt-tolerant rice varieties have to be chosen. Additionally, the results reinforce the need for the regular maintenance of dikes and other drainage structures to avoid brackish water entrance and guaranty minimum rice growth conditions. Future research will explore adopting this practice in field with modern water management, with the model enabling precise analysis of impact on sustainability.

Keywords: HYDRUS-1D; Optimal Growing Period; Rainfall Variability; Groundwater Depth; Salinity Stress; Salt-free period (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377425002082
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:313:y:2025:i:c:s0378377425002082

DOI: 10.1016/j.agwat.2025.109494

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-05-20
Handle: RePEc:eee:agiwat:v:313:y:2025:i:c:s0378377425002082