Enhancing crop water productivity and aquifer recharge in arid regions: Water balance insights for optimized hybrid irrigation in pecan orchards
Jorge L. Preciado,
Alexander G. Fernald,
Richard Heerema and
Curt Pierce
Agricultural Water Management, 2025, vol. 315, issue C
Abstract:
Converting to drip irrigation from flood irrigation promises to increase crop water productivity (WPC) but at the potential costs of lower crop yield and less deep percolation that could recharge aquifers. This study hypothesizes a significant difference in recharge rates in pecan orchards under flood and drip irrigation systems in the Mesilla Valley of southern New Mexico, USA, with differences in yield between the drip and the flood irrigation systems. For three years of measurements from 2019 to 2021, we found that of the total water applied, deep percolation rates were 11–52 % for the flood irrigated orchard and 4.4–4.8 % for the drip irrigated orchard, highlighting the greater efficiency of drip irrigation and greater deep percolation under flood irrigation. The results revealed that the drip irrigated orchard exhibited a higher WPC of 2.7 kg/mm, whereas the flood irrigated orchard yielded a WPC of 1.1 kg/mm during the study period. Even though the statistical analysis detected no significant differences in total in-shell weight or in-shell nut weight. These findings suggest that the observed differences between flood and drip irrigation systems do not translate to significant differences in total in-shell weight or in-shell nut weight. This study makes a significant contribution to existing literature by providing estimates and comparisons of deep percolation under different irrigation systems, using field data from pecan orchards. This research introduces a novel approach that optimizes the benefits of both irrigation systems. This hybrid approach has the potential to enhance water management practices in arid regions.
Keywords: Deep percolation; Drip irrigation; Flood irrigation; Soil moisture; Pecan yield (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377425002781
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:315:y:2025:i:c:s0378377425002781
DOI: 10.1016/j.agwat.2025.109564
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().