Effects of field length and management practices on dissolved organic carbon export in furrow irrigation
Damodhara R. Mailapalli,
Wesley W. Wallender,
Martin Burger and
William R. Horwath
Agricultural Water Management, 2010, vol. 98, issue 1, 29-37
Abstract:
Farming practices, including tillage, cover cropping and residue management can have profound effects on the efficiency of irrigation practices. The effects of three field management practices (FMPs) standard tillage and winter-fallow (ST), standard tillage and winter-cover crop (STCC), and no-till and winter-fallow (NT) and two field lengths (122 and 366Â m) on runoff and export of dissolved organic carbon (DOC) were investigated in a furrow-irrigated cropping system over two years. The residue cover was 40, 32 and 11% in 2007, and 58, 61 and 11% in 2008 for STCC, NT and ST, respectively. Furrow irrigation experiments were conducted prior to crop planting following the cover crop. The inflow was kept constant across all treatments, and infiltration and runoff were estimated using a volume balance model (VBM). The DOC concentration tended to increase with increasing field length, but did not differ among the FMPs. A threefold increase in field length increased infiltration by 40%, and decreased runoff by 60-90% and DOC export by 65-83%. In both years, infiltration was highest in STCC. In NT, infiltration was lowest in 2007, which was likely due to soil sealing, and intermediate among the three FMPs in 2008 perhaps due to the increase in residue cover in the second year. The DOC budget analysis showed that fields and FMPs acted as DOC sinks exporting less DOC than was applied in the irrigation water. The results suggest that longer furrows and STCC were greater DOC sinks compared to ST and shorter field practices. The VBM, as applied in this study to estimate infiltration and runoff, could be used to predict optimal field length to minimize runoff and promote DOC adsorption to soil within the constraints of water quality and availability and soil conditions.
Keywords: Furrow; irrigation; Dissolved; organic; carbon; No; till; Field; length; Cover; crop; Volume; balance (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378-3774(10)00240-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:98:y:2010:i:1:p:29-37
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().