Development of DRAIN-WARMF model to simulate flow and nitrogen transport in a tile-drained agricultural watershed in Eastern Canada
Shadi Dayyani,
Shiv O. Prasher,
Ali Madani and
Chandra A. Madramootoo
Agricultural Water Management, 2010, vol. 98, issue 1, 55-68
Abstract:
A new watershed model, DRAIN-WARMF, was developed to simulate the hydrologic processes and the nitrogen fate and transport that occur in small, predominantly subsurface-drained, agricultural watersheds that experience periodic freezing and thawing conditions. In this modeling approach, surface flow is simulated using a watershed scale model, WARMF, and subsurface flow is estimated using a field-scale model for subsurface-drained shallow water table fields, DRAINMOD 5.1. For subsurface flow calculations, the watershed is subdivided into uniform cells, and DRAINMOD is run on each cell with inputs based on the individual hydrologic characteristics of the cell. The coupling results in a distributed parameter model that calculates the total flow at the outlet of a watershed as well as the nitrogen losses. The model was evaluated for the St. Esprit watershed, located approximately 50Â km northeast of Montreal. Simulations were carried out from 1994 to 1996; data from 1994 and 1995 was used for model calibration and data from 1996 was used for model validation. The new model was able to adequately simulate the hydrologic response and nitrate losses at the outlet of the watershed. Comparing the observed daily flow/monthly nitrogen with the model's outputs over the validation period returned an R2 value of 0.74/0.86 and modeling efficiency of 0.72/0.83. This clearly demonstrates the model's ability to simulate hydrology and nitrogen losses occurring in small agricultural watersheds in cold climates.
Keywords: Hydrological; modeling; WARMF; DRAINMOD; Non-point; source; pollution; Watershed; scale (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378-3774(10)00243-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:98:y:2010:i:1:p:55-68
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().