EconPapers    
Economics at your fingertips  
 

A new look at an old practice: Benefits from soil water accumulation in long fallows under Mediterranean conditions

Yvette M. Oliver, Michael J. Robertson and Cameron Weeks

Agricultural Water Management, 2010, vol. 98, issue 2, 291-300

Abstract: The practice of long fallowing, by omitting a year of cropping, is gaining renewed focus in the low rainfall zone of the northern agriculture region of Western Australia. The impetus behind this practice change has been a reduced use of pasture breaks in cereal crop rotations, and the belief that a fallow can improve soil water accumulation and thus buffer the negative effects of dry seasons on crop yields. We evaluated the benefits of long fallowing (full stubble retention, no weed growth allowed) in a continuous wheat sequence via simulation modelling with APSIM at two rainfall locations and five soil types. The simulated benefits to long fallowing were attributable to soil water accumulation only, as the effects on soil nitrogen, diseases or weeds were not evaluated. The long-term (100 years) mean wheat yield benefit to fallowing was 0.36-0.43Â t/ha in clay, 0.20-0.23Â t/ha in sand and loam, and 0-0.03Â t/ha in shallow sand and shallow loams. Over the range of seasons simulated the response varied from -0.20 to 3.87Â t/ha in the clay and -0.48 to 2.0Â t/ha for the other soils. The accumulation of soil water and associated yield benefits occurred in 30-40% of years on better soils and only 10-20% on poorer soils. For the loam soil, the majority of the yield increases occurred when the growing-season (May-September) rainfall following the fallow was low ( 30Â mm), although yield increase did occur with other combinations of growing-season rainfall and soil water. Over several years of a crop sequence involving fallow and wheat, the benefits from long fallowing due to greater soil water accumulation did not offset yield lost from omitting years from crop production, although the coefficient of variation for inter-annual farm grain production was reduced, particularly on clay soils during the 1998-2007 decade of below-average rainfall. We conclude that under future drying climates in Western Australia, fallowing may have a role to play in buffering the effects of enhanced inter-annual variability in rainfall. Investigations are required on the management of fallows, and management of subsequent crops (i.e. sowing earlier and crop density) so as to maximise yield benefits to subsequent crops while maintaining groundcover to prevent soil erosion.

Keywords: Fallow; Soil; water; Wheat; yield; Apsim; Crop; simulation (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378-3774(10)00291-X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:98:y:2010:i:2:p:291-300

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:98:y:2010:i:2:p:291-300