Landscape irrigation scheduling efficiency and adequacy by various control technologies
M.S. McCready and
M.D. Dukes
Agricultural Water Management, 2011, vol. 98, issue 4, 697-704
Abstract:
Automated residential irrigation systems tend to result in higher water use than non-automated systems. Increasing the scheduling efficiency of an automated irrigation system provides the opportunity to conserve water resources while maintaining good landscape quality. Control technologies available for reducing over-irrigation include evapotranspiration (ET) based controllers, soil moisture sensor (SMS) controllers, and rain sensors (RS). The purpose of this research was to evaluate the capability of these control technologies to schedule irrigation compared to a soil water balance model based on the Irrigation Association (IA) Smart Water Application Technologies (SWAT) testing protocol. Irrigation adequacy and scheduling efficiency were calculated in 30-day running totals to determine the amount of over- or under-irrigation for each control technology based on the IA SWAT testing protocol. A time-based treatment with irrigation 2 days/week and no rain sensor (NRS) was established as a comparison. In general, the irrigation adequacy ratings (measure of under-irrigation) for the treatments were higher during the fall months of testing than the spring months due to lower ET resulting in lower irrigation demand. Scheduling efficiency values (measure of over-irrigation) decreased for all treatments when rainfall increased. During the rainy period of this testing, total rainfall was almost double reference evapotranspiration (ETo) while in the remaining three testing periods the opposite was true. The 30-day irrigation adequacy values, considering all treatments, varied during the testing periods by 0-68 percentile points. Looking at only one 30-day testing period, as is done in the IA SWAT testing protocol, will not fully capture the performance of an irrigation controller. Scheduling efficiency alone was not a good indicator of controller performance. The amount of water applied and the timing of application were both important to maintaining acceptable turfgrass quality and receiving good irrigation adequacy and scheduling efficiency scores.
Keywords: Soil; moisture; sensor; controller; Rain; sensor; Evapotranspiration; controller; Soil; water; balance; Smart; Water; Application; Technology (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378-3774(10)00365-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:98:y:2011:i:4:p:697-704
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().