Data Shared Lasso: A novel tool to discover uplift
Samuel M. Gross and
Robert Tibshirani
Computational Statistics & Data Analysis, 2016, vol. 101, issue C, 226-235
Abstract:
A model is presented for the supervised learning problem where the observations come from a fixed number of pre-specified groups, and the regression coefficients may vary sparsely between groups. The model spans the continuum between individual models for each group and one model for all groups. The resulting algorithm is designed with a high dimensional framework in mind. The approach is applied to a sentiment analysis dataset to show its efficacy and interpretability. One particularly useful application is for finding sub-populations in a randomized trial for which an intervention (treatment) is beneficial, often called the uplift problem. Some new concepts are introduced that are useful for uplift analysis. The value is demonstrated in an application to a real world credit card promotion dataset. In this example, although sending the promotion has a very small average effect, by targeting a particular subgroup with the promotion one can obtain a 15% increase in the proportion of people who purchase the new credit card.
Keywords: Clinical studies; High dimensional regression; ℓ1 penalization; Multi-task learning; Sentiment analysis; Uplift (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016794731630041X
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:101:y:2016:i:c:p:226-235
DOI: 10.1016/j.csda.2016.02.015
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().