A finite mixture of multiple discrete distributions for modelling heaped count data
Lluís Bermúdez,
Dimitris Karlis and
Miguel Santolino
Computational Statistics & Data Analysis, 2017, vol. 112, issue C, 14-23
Abstract:
A new modelling approach, based on finite mixtures of multiple discrete distributions of different multiplicities, is proposed to fit data with a lot of periodic spikes in certain values. An EM algorithm is provided in order to ensure the models’ ease-of-fit and then a simulation study is presented to show its efficiency. A numerical application with a real data set involving the length, measured in days, of inability to work after an accident occurs is treated. The main finding is that the model provides a very good fit when working week, calendar week and month multiplicities are taken into account.
Keywords: Digit preference; EM algorithm; Multiple Poisson; Work disability days (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947317300439
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:112:y:2017:i:c:p:14-23
DOI: 10.1016/j.csda.2017.02.013
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().