Robustness of classical and optimal designs to missing observations
Byran J. Smucker,
Willis Jensen,
Zichen Wu and
Bo Wang
Computational Statistics & Data Analysis, 2017, vol. 113, issue C, 251-260
Abstract:
Missing observations are not uncommon in real-world experiments. Consequently, the robustness of an experimental design to one or more missing runs is an important characteristic of the design. Results of an evaluation of the robustness of classical and optimal designs to missing observations are presented, and optimal designs fare relatively well in terms of robustness compared to classical designs. Additionally, a modified version of an existing robustness criterion is used to construct designs that are robust to missing observations.
Keywords: Central composite designs; Factorial designs; Missing data; D-efficiency; I-efficiency (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947316302912
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:113:y:2017:i:c:p:251-260
DOI: 10.1016/j.csda.2016.12.001
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().