Student Sliced Inverse Regression
Alessandro Chiancone,
Florence Forbes and
Stéphane Girard
Computational Statistics & Data Analysis, 2017, vol. 113, issue C, 441-456
Abstract:
Sliced Inverse Regression (SIR) has been extensively used to reduce the dimension of the predictor space before performing regression. SIR is originally a model free method but it has been shown to actually correspond to the maximum likelihood of an inverse regression model with Gaussian errors. This intrinsic Gaussianity of standard SIR may explain its high sensitivity to outliers as observed in a number of studies. To improve robustness, the inverse regression formulation of SIR is therefore extended to non-Gaussian errors with heavy-tailed distributions. Considering Student distributed errors it is shown that the inverse regression remains tractable via an Expectation–Maximization (EM) algorithm. The algorithm is outlined and tested in the presence of outliers, both in simulated and real data, showing improved results in comparison to a number of other existing approaches.
Keywords: Dimension reduction; Inverse regression; Outliers; Robust estimation; Generalized Student distribution (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947316301852
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:113:y:2017:i:c:p:441-456
DOI: 10.1016/j.csda.2016.08.004
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().