Lasso, fractional norm and structured sparse estimation using a Hadamard product parametrization
Peter D. Hoff
Computational Statistics & Data Analysis, 2017, vol. 115, issue C, 186-198
Abstract:
Using a multiplicative reparametrization, it is shown that a subclass of Lq penalties with q less than or equal to one can be expressed as sums of L2 penalties. It follows that the lasso and other norm-penalized regression estimates may be obtained using a very simple and intuitive alternating ridge regression algorithm. As compared to a similarly intuitive EM algorithm for Lq optimization, the proposed algorithm avoids some numerical instability issues and is also competitive in terms of speed. Furthermore, the proposed algorithm can be extended to accommodate sparse high-dimensional scenarios, generalized linear models, and can be used to create structured sparsity via penalties derived from covariance models for the parameters. Such model-based penalties may be useful for sparse estimation of spatially or temporally structured parameters.
Keywords: Cyclic coordinate descent; Generalized linear model; Linear regression; Optimization; Ridge regression; Sparsity; Spatial autocorrelation (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947317301469
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:115:y:2017:i:c:p:186-198
DOI: 10.1016/j.csda.2017.06.007
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().