EconPapers    
Economics at your fingertips  
 

A multivariate normal regression model for survival data subject to different types of dependent censoring

Negera Wakgari Deresa and Ingrid Van Keilegom

Computational Statistics & Data Analysis, 2020, vol. 144, issue C

Abstract: In survival analysis observations are often right censored and this complicates considerably the analysis of these data. Right censoring can have several underlying causes: administrative censoring, loss to follow up, competing risks, etc. The (latent) censoring times corresponding to the latter two types of censoring are possibly related to the survival time of interest, and in that case this should be taken into account in the model. A unifying model is presented that allows these censoring mechanisms in one single model, and that is also able to incorporate the effect of covariates on these times. Each time variable is modeled by means of a transformed linear model, with the particularity that the error terms of the transformed times follow a multivariate normal distribution allowing for non-zero correlations. It is shown that the model is identified and the model parameters are estimated through a maximum likelihood approach. The performance of the proposed method is compared with methods that assume independent censoring using finite sample simulations. The results show that the proposed method exhibits major advantages in terms of reducing the bias of the parameter estimates. However, a strong deviation from normality and/or a strong violation of the homogeneous variance assumption may lead to biased estimates. Finally, the model and the estimation method are illustrated using the analysis of data coming from a prostate cancer clinical trial.

Keywords: Administrative censoring; Association; Competing risks; Identifiability; Loss to follow up; Parametric models; Survival analysis (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947319302348
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:144:y:2020:i:c:s0167947319302348

DOI: 10.1016/j.csda.2019.106879

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:144:y:2020:i:c:s0167947319302348