EconPapers    
Economics at your fingertips  
 

Structured analysis of the high-dimensional FMR model

Mengque Liu, Qingzhao Zhang, Kuangnan Fang and Shuangge Ma

Computational Statistics & Data Analysis, 2020, vol. 144, issue C

Abstract: The finite mixture of regression (FMR) model is a popular tool for accommodating data heterogeneity. In the analysis of FMR models with high-dimensional covariates, it is necessary to conduct regularized estimation and identify important covariates rather than noises. In the literature, there has been a lack of attention paid to the differences among important covariates, which can lead to the underlying structure of covariate effects. Specifically, important covariates can be classified into two types: those that behave the same in different subpopulations and those that behave differently. It is of interest to conduct structured analysis to identify such structures, which will enable researchers to better understand covariates and their associations with outcomes. Specifically, the FMR model with high-dimensional covariates is considered. A structured penalization approach is developed for regularized estimation, selection of important variables, and, equally importantly, identification of the underlying covariate effect structure. The proposed approach can be effectively realized, and its statistical properties are rigorously established. Simulation demonstrates its superiority over alternatives. In the analysis of cancer gene expression data, interesting models/structures missed by the existing analysis are identified.

Keywords: Finite mixture of regression model; Structure of covariate effect; High-dimensional data (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947319302385
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:144:y:2020:i:c:s0167947319302385

DOI: 10.1016/j.csda.2019.106883

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:144:y:2020:i:c:s0167947319302385