EconPapers    
Economics at your fingertips  
 

Efficient unequal probability resampling from finite populations

Pier Luigi Conti, Fulvia Mecatti and Federica Nicolussi

Computational Statistics & Data Analysis, 2022, vol. 167, issue C

Abstract: A resampling technique for probability-proportional-to size sampling designs is proposed. It is essentially based on a special form of variable probability, without replacement sampling applied directly to the sample data, yet according to the pseudo-population approach. From a theoretical point of view, it is asymptotically correct: as both the sample size and the population size increase, under mild regularity conditions the proposed resampling design tends to coincide with the original sampling design under which sample data were collected. From a computational point of view, the proposed methodology is easy to be implemented and efficient, because it neither requires the actual construction of the pseudo-population nor any form of randomization to ensure integer weights and sizes. Empirical evidence based on a simulation study1 indicates that the proposed resampling technique outperforms its two main competitors for confidence interval construction of various population parameters including quantiles.

Keywords: Finite populations; Sampling designs; Resampling; Pseudo-population (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947321002000
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:167:y:2022:i:c:s0167947321002000

DOI: 10.1016/j.csda.2021.107366

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:167:y:2022:i:c:s0167947321002000