Thresholding tests based on affine LASSO to achieve non-asymptotic nominal level and high power under sparse and dense alternatives in high dimension
Sylvain Sardy,
Jairo Diaz-Rodriguez and
Caroline Giacobino
Computational Statistics & Data Analysis, 2022, vol. 173, issue C
Abstract:
Thresholding estimators such as the existing square-root and LAD LASSO, and the new affine and GLM LASSO with new link functions, have the ability to set coefficients to zero. They will yield new pivotal statistics which enjoy high power under sparse or dense alternative hypotheses. Under a general formalism, thresholding tests not only recover existing tests such as Rao score test and Fisher nonparametric sign test, but also unveil new tests, for the global/omnibus hypothesis in high dimension in particular. Although pivotal, the new statistics do not have a known distribution, so the critical value of the test is calculated by straightforward Monte Carlo, which yields exact level and high power as illustrated on simulated data.
Keywords: Generalized linear model; LASSO; Pivotal statistic; Sparsity (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947322000871
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:173:y:2022:i:c:s0167947322000871
DOI: 10.1016/j.csda.2022.107507
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().