EconPapers    
Economics at your fingertips  
 

Joint non-parametric estimation of mean and auto-covariances for Gaussian processes

Tatyana Krivobokova, Paulo Serra, Francisco Rosales and Karolina Klockmann

Computational Statistics & Data Analysis, 2022, vol. 173, issue C

Abstract: Gaussian processes that can be decomposed into a smooth mean function and a stationary autocorrelated noise process are considered and a fully automatic nonparametric method to simultaneous estimation of mean and auto-covariance functions of such processes is developed. The proposed empirical Bayes approach is data-driven, numerically efficient, and allows for the construction of confidence sets for the mean function. Performance is demonstrated in simulations and real data analysis. The method is implemented in the R package eBsc.1

Keywords: Demmler-Reinsch basis; Empirical Bayes; Spectral density; Stationary process (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947322000998
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:173:y:2022:i:c:s0167947322000998

DOI: 10.1016/j.csda.2022.107519

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:173:y:2022:i:c:s0167947322000998