EconPapers    
Economics at your fingertips  
 

Robust fitting of mixture models using weighted complete estimating equations

Shonosuke Sugasawa and Genya Kobayashi

Computational Statistics & Data Analysis, 2022, vol. 174, issue C

Abstract: Mixture modeling, which considers the potential heterogeneity in data, is widely adopted for classification and clustering problems. Mixture models can be estimated using the Expectation-Maximization algorithm, which works with the complete estimating equations conditioned by the latent membership variables of the cluster assignment based on the hierarchical expression of mixture models. However, when the mixture components have light tails such as a normal distribution, the mixture model can be sensitive to outliers. This study proposes a method of weighted complete estimating equations (WCE) for the robust fitting of mixture models. Our WCE introduces weights to complete estimating equations such that the weights can automatically downweight the outliers. The weights are constructed similarly to the density power divergence for mixture models, but in our WCE, they depend only on the component distributions and not on the whole mixture. A novel expectation-estimating-equation (EEE) algorithm is also developed to solve the WCE. For illustrative purposes, a multivariate Gaussian mixture, a mixture of experts, and a multivariate skew normal mixture are considered, and how our EEE algorithm can be implemented for these specific models is described. The numerical performance of the proposed robust estimation method was examined using simulated and real datasets.

Keywords: Clustering; Divergence; EEE algorithm; Mixture of experts; Skew normal mixture (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947322001062
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:174:y:2022:i:c:s0167947322001062

DOI: 10.1016/j.csda.2022.107526

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:174:y:2022:i:c:s0167947322001062