EconPapers    
Economics at your fingertips  
 

Likelihood-free inference with deep Gaussian processes

Alexander Aushev, Henri Pesonen, Markus Heinonen, Jukka Corander and Samuel Kaski

Computational Statistics & Data Analysis, 2022, vol. 174, issue C

Abstract: Surrogate models have been successfully used in likelihood-free inference to decrease the number of simulator evaluations. The current state-of-the-art performance for this task has been achieved by Bayesian Optimization with Gaussian Processes (GPs). While this combination works well for unimodal target distributions, it is restricting the flexibility and applicability of Bayesian Optimization for accelerating likelihood-free inference more generally. This problem is addressed by proposing a Deep Gaussian Process (DGP) surrogate model that can handle more irregularly behaved target distributions. The experiments show how DGPs can outperform GPs on objective functions with multimodal distributions and maintain a comparable performance in unimodal cases. At the same time, DGPs generally require much fewer data to achieve the same level of performance as neural density and kernel mean embedding alternatives. This confirms that DGPs as surrogate models can extend the applicability of Bayesian Optimization for likelihood-free inference (BOLFI), while only adding computational overhead that remains negligible for computationally intensive simulators.

Keywords: Approximate Bayesian computation; Bayesian optimization; Gaussian processes; Deep learning (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947322001098
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:174:y:2022:i:c:s0167947322001098

DOI: 10.1016/j.csda.2022.107529

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:174:y:2022:i:c:s0167947322001098