Inference on a stochastic SIR model including growth curves
Giuseppina Albano,
Virginia Giorno,
Gema Pérez-Romero and
Francisco de Asis Torres-Ruiz
Computational Statistics & Data Analysis, 2025, vol. 212, issue C
Abstract:
A Susceptible-Infected-Removed stochastic model is presented, in which the stochasticity is introduced through two independent Brownian motions in the dynamics of the Susceptible and Infected populations. To account for the natural evolution of the Susceptible population, a growth function is considered in which size is influenced by the birth and death of individuals. Inference for such a model is addressed by means of a Quasi Maximum Likelihood Estimation (QMLE) method. The resulting nonlinear system can be numerically solved by iterative procedures. A technique to obtain the initial solutions usually required by such methods is also provided. Finally, simulation studies are performed for three well-known growth functions, namely Gompertz, Logistic and Bertalanffy curves. The performance of the initial estimates of the involved parameters is assessed, and the goodness of the proposed methodology is evaluated.
Keywords: Euler-Maruyama scheme; Growth curves; Inference; Newton method; Quasi maximum likelihood estimation (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947325001070
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:212:y:2025:i:c:s0167947325001070
DOI: 10.1016/j.csda.2025.108231
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().