New tests for the identity and sphericity of high-dimensional covariance matrices via U-statistics
Xiaoge Xiong
Computational Statistics & Data Analysis, 2025, vol. 212, issue C
Abstract:
Two novel test procedures are proposed for the identity and sphericity of covariance matrices in high-dimensional asymptotic frameworks, both constructed via U-statistics. The limiting distributions of these tests are established under null and local alternative hypotheses. Monte Carlo simulation results demonstrate their superiority over several competing methods across various scenarios, with the proposed tests achieving full power against both dense and sparse alternatives. The effectiveness of the proposed tests is further validated through an application to a colon dataset.
Keywords: Central limit theorem; High-dimensional data; Covariance matrix; Identity test; Sphericity test (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947325001185
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:212:y:2025:i:c:s0167947325001185
DOI: 10.1016/j.csda.2025.108242
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().