Estimating a smooth covariance for functional data
Uche Mbaka,
James Owen Ramsay and
Michelle Carey
Computational Statistics & Data Analysis, 2026, vol. 213, issue C
Abstract:
Functional data analysis frequently involves estimating a smooth covariance function based on observed data. This estimation is essential for understanding interactions among functions and constitutes a fundamental aspect of numerous advanced methodologies, including functional principal component analysis. Two approaches for estimating smooth covariance functions in the presence of measurement errors are introduced. The first method employs a low-rank approximation of the covariance matrix, while the second ensures positive definiteness via a Cholesky decomposition. Both approaches employ the use of penalized regression to produce smooth covariance estimates and have been validated through comprehensive simulation studies. The practical application of these methods is demonstrated through the examination of average weekly milk yields in dairy cows as well as egg-laying patterns of Mediterranean fruit flies.
Keywords: Functional data analysis; Spline smoothing; Matrix factorization; Cholesky decomposition; Covariance estimation; Positive definite; Low rank (search for similar items in EconPapers)
Date: 2026
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947325001318
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:213:y:2026:i:c:s0167947325001318
DOI: 10.1016/j.csda.2025.108255
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().