Variable selection in AUC-optimizing classification
Hyungwoo Kim and
Seung Jun Shin
Computational Statistics & Data Analysis, 2026, vol. 213, issue C
Abstract:
Optimizing the receiver operating characteristic (ROC) curve is a popular way to evaluate a binary classifier under imbalanced scenarios frequently encountered in practice. A practical approach to constructing a linear binary classifier is presented by simultaneously optimizing the area under the ROC curve (AUC) and selecting informative variables in high dimensions. In particular, the smoothly clipped absolute deviation (SCAD) penalty is employed, and its oracle property is established, which enables the development of a consistent BIC-type information criterion that greatly facilitates the tuning procedure. Both simulated and real data analyses demonstrate the promising performance of the proposed method in terms of AUC optimization and variable selection.
Keywords: ROC curve; SCAD penalty; Oracle property; Information criterion; Diverging predictors; Variable selection (search for similar items in EconPapers)
Date: 2026
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016794732500132X
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:213:y:2026:i:c:s016794732500132x
DOI: 10.1016/j.csda.2025.108256
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().