Empirical likelihood based Bayesian variable selection
Yichen Cheng and
Yichuan Zhao
Computational Statistics & Data Analysis, 2026, vol. 213, issue C
Abstract:
Empirical likelihood is a popular nonparametric statistical tool that does not require any distributional assumptions. The possibility of conducting variable selection via Bayesian empirical likelihood is studied both theoretically and empirically. Theoretically, it is shown that when the prior distribution satisfies certain mild conditions, the corresponding Bayesian empirical likelihood estimators are posteriorly consistent and variable selection consistent. As special cases, the prior of Bayesian empirical likelihood LASSO and SCAD satisfy such conditions and thus can identify the non-zero elements of the parameters with probability approaching 1. In addition, it is easy to verify that those conditions are met for other widely used priors such as ridge, elastic net and adaptive LASSO. Empirical likelihood depends on a parameter that needs to be obtained by numerically solving a non-linear equation. Thus, there exists no conjugate prior for the posterior distribution, which causes the slow convergence of the MCMC sampling algorithm in some cases. To solve this problem, an approximation distribution is used as the proposal to enhance the acceptance rate and, therefore, facilitate faster computation. The computational results demonstrate quick convergence for the examples used in the paper. Both simulations and real data analyses are performed to illustrate the advantages of the proposed methods.
Keywords: Bayesian LASSO/SCAD; Laplace prior; Posterior consistency; Variable selection consistency (search for similar items in EconPapers)
Date: 2026
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947325001343
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:213:y:2026:i:c:s0167947325001343
DOI: 10.1016/j.csda.2025.108258
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().