EconPapers    
Economics at your fingertips  
 

Identification-robust simulation-based inference in joint discrete/continuous models for energy markets

Denis Bolduc (), Lynda Khalaf and Érick Moyneur

Computational Statistics & Data Analysis, 2008, vol. 52, issue 6, 3148-3161

Abstract: In the analysis of energy use models, a common problem consists in correcting for endogenous discrete-choice variables. Indeed, energy demand equations often include endogenous dummies which reflect the underlying discrete-choice for e.g. energy equipment. The latter lead to discrete/continuous (D/C) statistical models where the discrete and continuous components are statistically dependent, so weak-identification problems may occur which stem from the "quality" of the first stage instrumental model. These problems are studied in the context of energy demand analysis. A wide mixed-logit-based class of models is considered which allow for dependent choices, heteroskedasticity and multi-dimensionality. The severity of weak-identification problems and relevance for empirical practice are documented, even with very large data sets. Tractable and reliable (in the sense of type I error control) solutions are proposed which combine generalized Anderson-Rubin (GAR) procedures and maximum simulated likelihood (MSL) methods for models commonly used in practice. Results are illustrated via Monte-Carlo examples and an empirical study on electricity demand.

Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(07)00362-3
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:52:y:2008:i:6:p:3148-3161

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:52:y:2008:i:6:p:3148-3161