Strong convergence rate of estimators of change point and its application
Xiaoping Shi,
Yuehua Wu and
Baiqi Miao
Computational Statistics & Data Analysis, 2009, vol. 53, issue 4, 990-998
Abstract:
Let {Xn,n[greater-or-equal, slanted]1} be an independent sequence with a mean shift. We consider the cumulative sum (CUSUM) estimator of a change point. It is shown that, when the rth moment of Xn is finite, for n[greater-or-equal, slanted]1 and r>1, strong convergence rate of the change point estimator is o(M(n)/n), for any M(n) satisfying that M(n)[short up arrow][infinity], which has improved the results in the literature. Furthermore, it is also shown that the preceding rate is still valid for some dependent or negative associate cases. We also propose an iterative algorithm to search for the location of a change point. A simulation study on a mean shift model with a stable distribution is provided, which demonstrates that the algorithm is efficient. In addition, a real data example is given for illustration.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00551-3
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:53:y:2009:i:4:p:990-998
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().