EconPapers    
Economics at your fingertips  
 

Robust PCA for skewed data and its outlier map

Mia Hubert, Peter Rousseeuw and Tim Verdonck

Computational Statistics & Data Analysis, 2009, vol. 53, issue 6, 2264-2274

Abstract: The outlier sensitivity of classical principal component analysis (PCA) has spurred the development of robust techniques. Existing robust PCA methods like ROBPCA work best if the non-outlying data have an approximately symmetric distribution. When the original variables are skewed, too many points tend to be flagged as outlying. A robust PCA method is developed which is also suitable for skewed data. To flag the outliers a new outlier map is defined. Its performance is illustrated on real data from economics, engineering, and finance, and confirmed by a simulation study.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00287-9
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:53:y:2009:i:6:p:2264-2274

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-23
Handle: RePEc:eee:csdana:v:53:y:2009:i:6:p:2264-2274